Lightweight modular recommendation system. Current model lr-ibcf provides fast and accurate item-based recommendations using user-item interactions.
lr-ibcf (Item-Based Collaborative Filtering) is designed to recommend items similar to those a user likes. It analyzes the interactions between users and items to compute item similarity and generate relevant suggestions.
act.Install via npm:
npm install @lightrec/lr-ibcf
Basic usage with comments:
import { RecEngine } from '@lightrec/lr-ibcf';
// 1. Create a new engine instance
const engine = new RecEngine();
// 2. Feed interaction data
engine.feed([
{ userId: 'u1', itemId: 'i1', points: 5 },
{ userId: 'u1', itemId: 'i2', points: 4 },
{ userId: 'u2', itemId: 'i1', points: 3 },
]);
// 3. Add a single interaction dynamically
engine.act('i3', 'u1', 4);
// 4. Generate recommendations for a user (top 5)
const recommended = engine.recommendForUser('u1', 5);
console.log(recommended); // Output: Array of recommended itemIds
// 5. Optional: Debug internal matrix
engine.printItemUserMatrix();