LightRec

Lightweight modular recommendation system. Current model lr-ibcf provides fast and accurate item-based recommendations using user-item interactions.

Model: lr-ibcf

Purpose

lr-ibcf (Item-Based Collaborative Filtering) is designed to recommend items similar to those a user likes. It analyzes the interactions between users and items to compute item similarity and generate relevant suggestions.

Key Functions

Installation & Usage

Install via npm:

npm install @lightrec/lr-ibcf

Basic usage with comments:

import { RecEngine } from '@lightrec/lr-ibcf';

// 1. Create a new engine instance
const engine = new RecEngine();

// 2. Feed interaction data
engine.feed([
  { userId: 'u1', itemId: 'i1', points: 5 },
  { userId: 'u1', itemId: 'i2', points: 4 },
  { userId: 'u2', itemId: 'i1', points: 3 },
]);

// 3. Add a single interaction dynamically
engine.act('i3', 'u1', 4);

// 4. Generate recommendations for a user (top 5)
const recommended = engine.recommendForUser('u1', 5);
console.log(recommended); // Output: Array of recommended itemIds

// 5. Optional: Debug internal matrix
engine.printItemUserMatrix();

About the Author

MD Muktadirul Islam Mahi,“ Full-stack developer and open-source enthusiast. Passionate about AI, web dev, and lightweight recommendation engines.

GitHub: https://github.com/Muktadirul675

lr-ibcf on GitHub: https://github.com/Muktadirul675/lr-ibcf

lr-ibcf on npm: https://www.npmjs.com/package/@lightrec/lr-ibcf